Estimation of state, shape, and inertial parameters of space objects from sequences of range images
نویسندگان
چکیده
This paper presents an architecture for the estimation of dynamic state, geometric shape, and inertial parameters of objects in orbit, using on-orbit cooperative 3-D vision sensors. This has application in many current and projected space missions, such as satellite capture and servicing, debris capture and mitigation, and large space structure assembly and maintenance. The method presented here consists of three distinct parts: (1) kinematic data fusion, which condenses sensory data into a coarse estimate of target pose; (2) Kalman filtering, which filters these coarse estimates and extracts the full dynamic state and inertial parameters of the target; and (3) shape estimation, which uses filtered pose information and the raw sensory data to build a probabilistic map of the target’s shape. This method does not rely on feature detection, optical flow, or model matching, and therefore is robust to the harsh sensing conditions of space. Instead, it exploits the well-modeled dynamics of objects in space through the Kalman filter. The architecture is computationally fast since only coarse measurements need to be provided to the Kalman filter. This paper will summarize the three steps of the architecture. Simulation results will follow showing the theoretical performance of the architecture.
منابع مشابه
A PRACTICAL APPROACH TO REAL-TIME DYNAMIC BACKGROUND GENERATION BASED ON A TEMPORAL MEDIAN FILTER
In many computer vision applications, segmenting and extraction of moving objects in video sequences is an essential task. Background subtraction, by which each input image is subtracted from the reference image, has often been used for this purpose. In this paper, we offer a novel background-subtraction technique for real-time dynamic background generation using color images that are taken fro...
متن کاملApplication of Shape Analysis on 3D Images - MRI of Renal Tumors
The image recognotion and the classification of objects according to the images are more in focus of interests, especially in medicine. A mathematical procedure allows us, not only to evaluate the amount of data per se, but also ensures that each image is pro- cessed similarly. Here in this study, we propose the power of shape analysis, in conjunction with neural networks for reducing white n...
متن کاملOnline State Space Model Parameter Estimation in Synchronous Machines
The purpose of this paper is to present a new approach based on the Least Squares Error method for estimating the unknown parameters of the nonlinear 3rd order synchronous generator model. The proposed method uses the mathematical relationships between the machine parameters and on-line input/output measurements to estimate the parameters of the nonlinear state space model. The field voltage is...
متن کاملAdaptive Fusion of Inertial Navigation System and Tracking Radar Data
Against the range-dependent accuracy of the tracking radar measurements including range, elevation and bearing angles, a new hybrid adaptive Kalman filter is proposed to enhance the performance of the radar aided strapdown inertial navigation system (INS/Radar). This filter involves the concept of residual-based adaptive estimation and adaptive fading Kalman filter and tunes dynamically the fil...
متن کاملComparison of Different Targets Used in Augmented Reality Applications in Ubiquitous GIS
Drilling requires accurate information about locations of underground infrastructures or it can cause serious damages. Augmented Reality (AR) as a technology in Ubiquitous GIS (UBIGIS) can be used to visualize underground infrastructures on smartphones. Since smartphone’s sensors do not provide such accuracy, another approaches should be applied. Vision based computer vision systems are well kn...
متن کامل